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Abstract. This paper analyzes the cost of breaking ECC under the following assumptions: (1) ECC is
using a standardized elliptic curve that was actually chosen by an attacker; (2) the attacker is aware of a
vulnerability in some curves that are not publicly known to be vulnerable.

This cost includes the cost of exploiting the vulnerability, but also the initial cost of computing a curve
suitable for sabotaging the standard. This initial cost depends upon the acceptability criteria used by the
public to decide whether to allow a curve as a standard, and (in most cases) also upon the chance of a
curve being vulnerable.

This paper shows the importance of accurately modeling the actual acceptability criteria: i.e., figuring out
what the public can be fooled into accepting. For example, this paper shows that plausible models of the
“Brainpool acceptability criteria” allow the attacker to target a one-in-a-million vulnerability.

Keywords. Elliptic-curve cryptography, verifiably random curves, verifiably pseudorandom curves, nothing-
up-my-sleeve numbers, sabotaging standards, fighting terrorism, protecting the children.

1 Introduction

More and more Internet traffic is encrypted. This poses a threat to our society as it limits the ability of
government agencies to monitor Internet communication for the prevention of terrorism and globalized
crime. For example, an increasing number of servers use Transport Layer Security (TLS) as default
(not only for transmissions that contain passwords or payment information) and also most modern
chat applications encrypt all communication. This increases the cost of protecting society as it becomes
necessary to collect the required information at the end points, i.e., either the servers or the clients.
This requires agencies to either convince the service providers to make the demanded information
available or to deploy a back door on the client system respectively. Both actions are much more
expensive for the agencies than collecting unprotected information from the transmission wire.

Fortunately, under reasonable assumptions, it is feasible for agencies to fool users into deploying
cryptographic systems that the users believe are secure but that the agencies are able to break.

1.1 Elliptic-curve cryptography

Elliptic-curve cryptography (ECC) has a reputation for high security and has become increasingly
popular. For definiteness we consider the elliptic-curve Diffie–Hellman (ECDH) key-exchange protocol,
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specifically “ephemeral ECDH”, which has a reputation of being the best way to achieve forward
secrecy. The literature models ephemeral ECDH as the following protocol ECDHE,P , Diffie–Hellman
key exchange using a point P on an elliptic curve E:

1. Alice generates a private integer a and sends aP , the ath multiple of P on E.

2. Bob generates a private integer b and sends bP .

3. Alice computes abP as the ath multiple of bP .

4. Bob computes abP as the bth multiple of aP .

5. Alice and Bob encrypt data using a secret key derived from abP .

There are various published attacks showing that this protocol is breakable for many elliptic curves E,
no matter how strong the encryption is. See Section 2 for details. However, there are also many (E,P )
for which the public literature does not indicate any security problems. Similar comments apply to,
e.g., elliptic-curve signatures.

This model begs the question of where the curve (E,P ) comes from. The standard answer is that a
central authority generates a curve for the public (while advertising the resulting benefits for security
and performance); see, e.g., [25,13,16,7,26,4,1,12]. This does not mean that the public will accept
arbitrary curves; our main objective in this paper is to analyze the security consequences of various
possibilities for what the public will accept. The general picture is that Alice, Bob, and the central
authority Jerry are actually participating in the following three-party protocol ECDHA, where A is a
function determining the public acceptability of a standard curve:

−1. Jerry generates a curve E, a point P , and auxiliary data S such that A(E,P, S) = 1.

0. Alice and Bob verify that A(E,P, S) = 1.

1. Alice generates a private integer a and sends aP .

2. Bob generates a private integer b and sends bP .

3. Alice computes abP as the ath multiple of bP .

4. Bob computes abP as the bth multiple of aP .

5. Alice and Bob encrypt data using a secret key derived from abP .

Our paper is targeted at Jerry. We make the natural assumption that Jerry is cooperating with a
heroic eavesdropper Eve to break the encryption used by potential criminals Alice and Bob. The
central question is how Jerry can use his curve-selection flexibility to minimize the attack cost.

Obviously the cost cA of breaking ECDHA depends on A, the same way that the cost cE,P of
breaking ECDHE,P depends on (E,P ). One might think that, to evaluate cA, one simply has to
check what the public literature says about cE,P , and then minimize cE,P over all (E,P, S) with
A(E,P, S) = 1. The reality is more complicated, for three reasons:

1. There may be vulnerabilities not known to the public: curves E for which cE,P is smaller than
indicated by the best public attacks. Our starting assumption is that Jerry and Eve are secretly
aware of a vulnerability that applies to a fraction ε of all isomorphism classes of curves that the
public believes to be secure. The obvious strategy for Jerry is to standardize a vulnerable curve.

2. Some choices of A limit the number of curves E for which there exists suitable auxiliary data S.
If 1/ε is much larger than this limit then Jerry cannot expect any vulnerable (E,P, S) to have
A(E,P, S) = 1. Fortunately for Jerry, this limit turns out to be much larger than the public
thinks it is. See Section 5.

3. Other choices of A do not limit the number of vulnerable E for which S exists but nevertheless
complicate Jerry’s task of finding a vulnerable (E,P, S) with A(E,P, S) = 1. See Section 4 for
analysis of the cost of this computation.

If Jerry succeeds in finding a vulnerable (E,P, S) with A(E,P, S) = 1, then Eve simply exploits the
vulnerability, obtaining access to the information that Alice and Bob have encrypted for transmission.

Of course, this could require considerable computation for Eve, depending on the details of the
secret vulnerability. Obviously, given the risk of this paper being leaked to the public, it would be
important for us to avoid discussing details of secret vulnerabilities, even if we were aware of such
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vulnerabilities.3 Our goal in this paper is not to evaluate the cost of Eve’s computation, but rather to
evaluate the impact of A and ε upon the cost of Jerry’s computation.

For this evaluation it is adequate to use simplified models of secret vulnerabilities. We specify
various artificial curve criteria that have no connection to vulnerabilities but that are satisfied by
(E,P, S) with probability ε for various sizes of ε. We then evaluate how difficult it is for Jerry to find
(E,P, S) that satisfy these criteria and that have A(E,P, S) = 1.

The reader might object to our specification of ECDHA as implicitly assuming that the party
sabotaging curve choices to protect society is the same as the party issuing curve standards to be
used by Alice and Bob. In reality, these two parties are different, and having the first party exercise
sufficient control over the second party is often a delicate exercise in finesse. See, for example, [8,6].

1.2 Organization

Section 2 surveys the curve attacks known to the public, including relevant probability analyses.
Section 3, as an easy warm-up, shows how to manipulate curve choices when A merely checks for
these public vulnerabilities. Section 4 shows how to manipulate “verifiably random” curve choices.
Section 5 shows how to manipulate “verifiably pseudorandom” curve choices.

2 Pesky public researchers and their security analyses

One obstacle Jerry has to face in deploying his backdoored elliptic curves is that public researchers
have raised awareness of certain weaknesses an elliptic curve may have. Once sufficient awareness of
a weakness has been raised, many standardization committees will feel compelled to mention that
weakness in their standards. This in turn may alert the targeted users, i.e., the general public: some
users will check what standards say regarding the properties that an elliptic curve should have or
should not have.

The good thing about standards is that there are so many to choose from. Standards evaluating or
claiming the security of various elliptic curves include ANSI X9.62 (1999) [25], IEEE standard P1363
(2000) [13], Certicom SEC 1 v1 (2000) [15], Certicom SEC 2 v1 (2000) [16], NIST FIPS 186-2 (2000) [7],
ANSI X9.63 (2001) [26], Brainpool (2005) [4], NSA Suite B (2005) [1], Certicom SEC 1 v2 (2009) [17],
Certicom SEC 2 v2 (2010) [18], OSCCA SM2 (2010) [22,23], and ANSSI FRP256V1 (2011) [12]. These
standards vary in many details, and also show important variations in public acceptability criteria, an
issue explored in depth in subsequent sections of this paper.

Unfortunately, some public criteria have become so widely known that all of the above standards
agree upon them. Jerry’s curves need to satisfy these criteria. This means not only that Jerry will be
unable to use these public attacks as back doors, but also that Jerry will have to bear these criteria
in mind when searching for a vulnerable curve. It is possible that the vulnerability known secretly to
Jerry does not occur in curves that satisfy the public criteria; on the other hand, it is also possible
that this vulnerability occurs more frequently in curves that satisfy the public criteria than in general
curves. The chance ε of a curve being vulnerable is defined relative to the curves that the public will
accept.

This section reviews these standard criteria for “secure” curves along with attacks those pesky
researchers have found. Jerry must be careful, when designing and justifying his curve, to avoid
revealing attacks outside this list; such attacks are not known to the public.

2.1 Review of public ECDLP security criteria

For simplicity we cover only prime fields here. The above standards from the last ten years use only
prime fields. If Jerry’s secret vulnerability works only in binary fields then we would expect Jerry to
have a harder time convincing his targets to use vulnerable curves, although of course he should try.

3 Note to any journalists who might end up reading this paper: There are no secret vulnerabilities. Really. ECC is
perfectly safe. You can quote Jerry.
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Let E be an elliptic curve defined over a large prime field Fp. One can always write E in the form
y2 = x3 + ax + b. Most curve standards choose a = −3 for efficiency reasons. Practically all curves
have low-degree isogenies to curves with a = −3, so this choice does not affect security.

Write |E(Fp)| for the number of points on E defined over Fp. Define ` as the largest prime factor
of |E(Fp)|, and define the “cofactor” h as |E(Fp)|/`. Let P be a point on E of order `.

Elliptic curve cryptography is based on the believed hardness of the elliptic-curve discrete-logarithm
problem (ECDLP), i.e., the belief that it is computationally infeasible to find a scalar k satisfying
Q = kP given a random multiple Q of P on E. The state-of-the-art public algorithm for solving the
ECDLP is Pollard’s rho method (with negation), which on average requires approximately 0.886

√
`

point additions. Most publications require the value ` to be large; for example, the SafeCurves web
page [3] requires that 0.886

√
` > 2100.

Some standards put upper limits on the cofactor h, but the limits vary. FIPS 186-2 [7, page 24]
claims that “for efficiency reasons, it is desirable to take the cofactor to be as small as possible”; the
2000 version of SEC 1 [15, page 17] required h ≤ 4; but the 2009 version of SEC 1 [17, pages 22 and 78]
claims that there are efficiency benefits to “some special curves with cofactor larger than four” and
thus requires merely h ≤ 2t/8 for security level 2t. We analyze a few possibilities for h and later give
examples with h = 1; many standard curves have h = 1.

Another security parameter is the complex-multiplication field discriminant (CM field discriminant)
which is defined as D = (t2−4p)/s2 if (t2−4p)/s2 ≡ 1 (mod 4) or otherwise D = 4(t2−4p)/s2, where
t is defined as p+ 1− |E(Fp)| and s2 is the largest square dividing t2 − 4p. One standard, Brainpool,
requires |D| to be large (by requiring a related quantity, the “class number”, to be large). However,
other standards do not constrain D, there are various ECC papers choosing curves where D is small,
and the only published attacks related to the size of D are some improvements to Pollard’s rho method
on a few curves. If Jerry needs a curve with small D then it is likely that Jerry can convince the public
to accept the curve. We do not pursue this possibility further.

All standards prohibit efficient additive and multiplicative transfers. An additive transfer reduces
the ECDLP to an easy DLP in the additive group of Fp; this transfer is applicable when ` equals p.
A degree-k multiplicative transfer reduces the ECDLP to the DLP in the multiplicative group of Fpk
where the problem can be solved efficiently using index calculus if the embedding degree k is not too
large; this transfer is applicable when ` divides pk − 1. All standards prohibit ` ∈ {p− 1, p, p+ 1} and
` dividing various larger pk − 1; the exact limit on k varies from one standard to another.

2.2 Review of public ECC security criteria

The most extensive public list of requirements is on the SafeCurves web page [3]. SafeCurves covers
hardness of ECDLP, generally imposing more stringent constraints than the standards listed above;
for example, SafeCurves requires |D| > 2100 and requires the order of p modulo `, i.e., the embedding
degree, to be at least (`−1)/100. Potentially more troublesome for Jerry is that SafeCurves also covers
the general security of ECC, i.e., the security of ECC implementations.

For example, if an implementor of NIST P-224 ECDH uses the side-channel-protected scalar-
multiplication algorithm recommended by Brier and Joye [5], reuses an ECDH key for more than
a few sessions, and fails to perform a moderately expensive input validation that has no impact on
normal usage, then a twist attack finds the user’s secret key using approximately 258 elliptic-curve
additions. See [3] for details. SafeCurves prohibits curves with low twist security, such as NIST P-224.

Luckily for Jerry, the other standards listed above focus on ECDLP hardness and impose very few
additional ECC security constraints. This gives Jerry the freedom (1) to choose a non-SafeCurves-
compliant curve that encourages insecure ECC implementations even if ECDLP is difficult, and (2)
to deny that there are any security problems. Useful denial text can be found in a May 2014 presen-
tation [11] from NIST: “The NIST curves do NOT belong to any known class of elliptic curves with
weak security properties. No sufficiently large classes of weak curves are known.”

Unfortunately, there is some risk that twist-security and other SafeCurves criteria will be added
to future standards. This paper considers the possibility that Jerry is forced to generate twist-secure
curves; it is important for Jerry to be able to sabotage curve standards even under the harshest
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conditions. Obviously it is also preferable for Jerry to choose a curve for which all implementations
are insecure, rather than merely a curve that encourages insecure implementations.

Twist-security requires the twist E′ of the original curve E to be secure. If |E(Fp)| = p + 1 − t
then |E′(Fp)| = p + 1 + t. Define `′ as the largest prime factor of p + 1 + t. SafeCurves requires
0.886

√
`′ > 2100 to prevent Pollard’s rho method; `′ 6= p to prevent additive transfers; and p having

order at least (`′ − 1)/100 modulo `′ to prevent multiplicative transfers. SafeCurves also requires
various “combined attacks” to be difficult; this is automatic when ` is very close to p+ 1− t and `′ is
very close to p+ 1 + t.

2.3 Probability analysis

This subsection analyzes the probability of random curves passing the public criteria described above.
The important quantities for Jerry are (1) this probability, (2) the probability ε that curves passing
the public criteria are secretly vulnerable to Jerry’s attack, and (3) the number of curves that Jerry
can afford to try and is allowed to try, depending on various optimizations and constraints discussed
in subsequent sections. Combining these quantities produces Jerry’s overall success chance at creating
a vulnerable curve that passes the public criteria, avoiding alarms from the pesky researchers.

Recall that |E(Fp)| = p+ 1− t and |E(Fp)| = h`. Hence, ` is a divisor of p+ 1− t. Furthermore,
Hasse’s theorem (see e.g. [21]) states that t is between −2

√
p and 2

√
p.

We begin by analyzing how many random curves have small cofactors. As illustrations we consider
cofactor h = 1, cofactor h = 2, and cofactor h = 4. Note that, for primes p large enough to pass
a laugh test (at least 224 bits), curves with these cofactors automatically satisfy the requirement
0.886

√
` > 2100; in other words, requiring a curve to have a small cofactor supersedes requiring a

curve to meet minimal public requirements for security against Pollard’s rho method.
Let π(x) be the number of primes p ≤ x, and let π(S) be the number of primes p in a set S. The

prime number theorem states that the ratio between π(x) and x/ log x converges to 1 as x→∞, where
log is the natural logarithm. Explicit bounds such as [19] are unfortunately not sufficient to count the
number of primes in a short interval I = [x − y, x], but there is nevertheless ample experimental
evidence that π(I) is very close to y/ log x when y is larger than

√
x.

The number of integers in I of the form `, 2`, or 4`, where ` is prime, is the same as the total
number of primes in the intervals I1 = [x−y, x], I2 = [(x−y)/2, x/2] and I4 = [(x−y)/4, x/4], namely

π(I1 ∪ I2 ∪ I4) ≈
y

log x
+

y/2

log (x/2)
+

y/4

log (x/4)
=

∑
h=1,2,4

y/h

log(x/h)
. (1)

Take x = p+ 1 + 2
√
p and y = 4

√
p to see that the number of such integers in the Hasse interval is

π(I1 ∪ I2 ∪ I4) ≈
∑

h=1,2,4

4
√
p/h

log ((p+ 1 + 2
√
p)/h)

.

The total number of integers in the Hasse interval is almost exactly 4
√
p, so the chance of an integer

in the interval having the form `, 2`, 4` is almost exactly

π(I1 ∪ I2 ∪ I4)/(4
√
p) ≈

∑
h=1,2,4

1

h log ((p+ 1 + 2
√
p)/h)

. (2)

This does not imply, however, that the same approximation is valid for the number of points
on a random elliptic curve. To test the approximation we performed the following experiment: take
p = 2224 − 296 + 1 (the NIST P-224 prime which is also used in following sections), and count the
number of points on many random curves. Within a set of 383800 random curves, we found 1430
curves for h = 1, found 1117 curves for h = 2, and found 934 curves for h = 4. The total chance of
`, 2`, 4` is approximately 0.00907, whereas Equation (2) evaluates to approximately 0.0113, a gap of
about 25%. The ratios between the individual proportions for h = 1, h = 2, and h = 4 are even farther
from the ratios in Equation (2): for example, the approximation is about 72% too optimistic for h = 1
but about 33% too pessimistic for h = 4.
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It has been pointed out before that group orders of elliptic curves tend to have small factors more
frequently than uniform random integers. See, e.g., the analysis by McKee [10]. However, the corre-
lations between these factors, and the resulting probabilities of finding primes with various cofactors,
seem to have been insufficiently analyzed.

We next analyze the probability of meeting the SafeCurves embedding-degree requirement. Luca,
Mireles, and Shparlinski gave a theoretical estimate [9] for the probability that for a sufficiently large
prime number p and a positive integer K with logK = O(log log p) a randomly chosen elliptic curve
E(Fp) has embedding degree k ≤ K. This result shows that curves with small embedding degree are
very rare, but the SafeCurves bound K = (` − 1)/100 is not within the bounds of their theorem.
Experimentally we found that 3446 curves out of our 3481 random small-cofactor curves had a high
embedding degree ≥ K, and none of them had ` = p.

Random curves have a large CM field discriminant, practically always meeting the SafeCurves CM
criterion. None of our experiments found a CM field discriminant below 2100.

The conclusion is that as long as Jerry’s vulnerability is not linked to the special properties tested
above, his only obstacle to getting his vulnerable curves deployed is that they need to have almost
prime order. If he can neglect twist security then about 1 in 111 random curves passes the criteria.
This is equivalent to a probability of 0.0090, i.e., about 2−7.

To analyze twist security, we directly conducted an experiment by randomly generating curves
counting how many of them pass the security criteria on both the original curve and the twist. We
found that only 15 out of 383800 curves had both the curve and its twist having almost prime order
and high embedding degree. These numbers imply that with probability roughly 2−15 a random curve
is protected according to the standard security criteria plus twist security.

3 Manipulating curves

In this section, we target users with minimal acceptability criteria: i.e., we assume that A(E,P, S)
checks only the public security criteria for (E,P ) described in the previous section. The auxiliary
data S might be used to communicate, e.g., a precomputed |E(Fp)| to be verified by the user, but is
not used to constrain the choice of (E,P ). Curves that pass the acceptability criteria are safe against
known attacks, but have no protection against Jerry’s secret vulnerability.

3.1 Curves without public justification

Here are two examples of standard curves distributed without any justification for how they were cho-
sen. These examples suggest that there are many ECC users who do in fact have minimal acceptability
criteria.

As a first example, we look at the FRP256V1 standard [12] published in 2011 by the Agence
nationale de la sécurité des systèmes d’information (ANSSI). This curve is y2 = x3 − 3x+ b over Fp,
where

b = 0xEE353FCA5428A9300D4ABA754A44C00FDFEC0C9AE4B1A1803075ED967B7BB73F,
p = 0xF1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C03.

Another example is a curve published by the Office of State Commercial Cryptography Adminis-
tration (OSCCA) in China along with the SM2 algorithms in 2010 (cf. [23,22]). The curve is of the
same form as the ANSSI one with

b = 0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93,
p = 0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF.

Each curve E is also accompanied by a point P . The curves meet the ECDLP requirements reviewed
in the previous section. The only further data provided with these curves is data that could also have
been computed efficiently by users from the above information. Nothing in the curve documentation
suggests any verification that would have further limited the choice of curves.
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3.2 The attack

The attack is straightforward. Since the only things that users check are the public security criteria,
Jerry can continue generating curves for a fixed p (either randomly or not) that satisfy the public
criteria until he gets one that is vulnerable to his secret attack. Alternatively, Jerry can generate
curves vulnerable to his secret attack and check them against the public security criteria. Every public
attack allows efficient computation of vulnerable curves, so it seems likely that the same will be true
for Jerry’s secret vulnerability. After finding a vulnerable curve, Jerry simply publishes it.

Of course, Jerry’s vulnerability must not depend on any properties excluded by the public security
criteria, and there must be enough vulnerable curves. Enumerating 27 vulnerable curves over Fp is
likely to be sufficient if Jerry can ignore twist-security, and enumerating 215 vulnerable curves over Fp
is likely to be sufficient even if twist-security is required.

Even if Jerry’s curves are less frequent, Jerry can increase his chances by also varying the prime p.
The standard security requirements do not seriously scrutinize the choice of prime. Any allowed vari-
ability in p would also improve the attack in Section 5, but to simplify our analysis we now make
the worst-case assumption that Jerry is forced to reuse particular standard primes such as the NIST
primes.

3.3 Implementation

We implemented the attack to demonstrate that it is really feasible in practice. In our implementation
the same setting as above is adopted and even made more restrictive: the resulting curve should be of
the form y2 = x3 − 3x + b over Fp, where p is the same as for the ANSSI curve. The public security
criteria we consider are all the standard ECDLP security criteria plus twist security, and we further
require that both cofactors are 1.

Of course, as explained in the introduction, we will not include any actual secret vulnerability in
this white paper. We instead use a highly structured parameter b as an artificial model of a secret
vulnerability. We show that we can construct a curve with very structured parameter b that passes all
the public criteria.

Our attack is implemented using the Sage computer algebra system [24]. We took

b = 0x5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55EC

as start value and incremented b until we found a curve that meets the public security criteria. This
corresponds to Jerry iteratively checking whether curves that are vulnerable to the secret attack fulfill
the public criteria.

As a result we found a desired curve, which we call BADA55-R-256, with

b = 0x5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA5A57

after 1131 increments within 78 minutes on a single core AMD CPU.4 One can easily check using any
computer algebra system that the curve does meet all the public criteria. It is thus clear that users
who only verify public security criteria can be very easily attacked, and Jerry has an easy time if he
is working for or is trusted by ANSSI, OSCCA, or a similar organization.

4 Manipulating seeds

For some audiences verifying public security criteria is not enough; they might demand justifications
for the curve choices. In this section, we consider users who are suspicious that the curve parameters
might be maliciously chosen to enable a secret attack, as in the previous section. Empirically many

4 Note that a lucky attacker starting from 0xBADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA

is able to find the following secure parameter already within 43 minutes after only 622 increments:

b = 0xBADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BD48.
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users are satisfied if they get a hash verification routine as justification like for example in case of
ANSI X9.62 [25], IEEE P1363 [13], SEC 2 [18], or NIST FIPS 186-2 [7]. Hash verification routines
mean that Jerry cannot use a very small set of vulnerable curves, but we will show below that he has
good chances to get vulnerable curves deployed if they are just somewhat more common.

4.1 Hash verification routine

As the name implies a hash verification routine involves a cryptographic hash function. The inputs
to the routine are the curve parameters and a seed that is published along with the curve. Usually
the seed is hashed to compute a curve parameter or point coordinate. The ways of computing the
parameters differ but the public justification is that these bind the curve parameters to the hash
value, making them hard to manipulate since the hash function is preimage resistant5. In addition the
user verifies a set of public security criteria. We focus on the obstacle that Jerry faces and call curves
that can be verified with such routines verifiably hashed curves.

For Jerry’s marketing we do not recommend the phrase “verifiably hashed”: it is better to claim
that the curves are totally random (even though this is not what is being verified) and that these
curves could not possibly be manipulated (even though Jerry is in fact quite free to manipulate them).
For example, ANSI X9.62 [25, page 31] speaks of “selecting an elliptic curve verifiably at random”;
SEC 2 [18, copy and paste: page 8 and page 18] claims that “verifiably random parameters offer
some additional conservative features” and “that the parameters cannot be predetermined”. NIST’s
marketing in [7] is not as good: NIST uses the term “pseudo-random curves”.

Below we recall the curve verification routine for the NIST P-curves. The routine is specified in
NIST FIPS 186-2 [7] and is based on ANSI X9.62 and IEEE P1363 [13].

Each NIST P-curve is of the form y2 = x3 − 3x+ b over a prime field Fp and is published with a
seed s. The hash function SHA-1 is denoted as SHA1; recall that SHA-1 produces a 160-bit hash value.
The bit length of p is denoted by m. We use bin(i) to denote the binary expansion of some integer i
and use int(j) to denote the integer with binary expansion j. For given parameters b, p, and s, the
verification routine is:

1. Let z ← int(s). Compute hi ← SHA1(si) for 0 ≤ i ≤ v, where si ← bin((z + i) mod 2160) and
v = b(m− 1)/160c.

2. Let h be the rightmost m− 1 bits of h0||h1|| · · · ||hv. Let c← int(h).

3. Verify that b2c = −27 in Fp.

To generate a verifiably hashed curve one starts with a seed and then follows the same steps 1
and 2 as above. Instead of step 3 one tries to solve for b given c; this succeeds in about 50% of all
choices for s. The public perception is that this process is repeated with fresh seeds until the resulting
curve satisfies all public security criteria.

4.2 Acceptability criteria

One might think that the public acceptability criteria are defined by the P1363/NIST verification
routine stated above: i.e., A(E,P, s) = 1 if and only if (E,P ) passes the public security criteria
from Section 2 and (E, s) passes the verification routine stated above with seed s and E defined as
y2 = x3 − 3x+ b.

However, the public acceptability criteria are not actually so strict. P1363 allows y2 = x3 + ax+ b
without the requirement a = −3. P1363 does require b2c = a3 where c is a hash as above, but neither
P1363 nor NIST gives a justification for the relation b2c = a3, and it is clear that the public will
accept different relations. For example, the Brainpool curves (see Section 5) use the simpler relations
a = g and b = h where g and h are separate hashes. One can equivalently view the Brainpool curves
as following the P1363 procedure but using a different hash for c, namely computing c as g3/h2 where
again g and h are separate hashes. Furthermore, even though NIST and Brainpool both use SHA-1,

5 If Jerry has a back door in the hash function this situation is no different than in the previous section, so we will not
assume this feature.
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SHA-1 is not the only acceptable hash function; for example, Jerry can easily argue that SHA-1 is
outdated and should be replaced by SHA-2 or SHA-3.

We do not claim that the public would accept any relation, or that the public would accept any
choice of “hash function”, allowing Jerry just as much freedom as in Section 3. The exact boundaries
of public acceptability are complicated and not immediately obvious. We have carried out small-scale
unscientific surveys to determine approximations to these boundaries (see Section 5), and we encourage
Jerry to carry out larger-scale surveys, while taking care to prevent leaks to the public.

4.3 The attack

Jerry begins the attack by defining a public hash verification routine. As explained above, Jerry has
some flexibility to modify this routine. This flexibility is not necessary for the rest of the attack in this
section (for example, Jerry can use exactly the NIST verification routine) but a more favorable routine
does improve the efficiency of the attack. Our cost analysis below makes a particularly efficient choice
of routine.

Jerry then tries one seed after another until finding a seed for which the verifiably hashed curve
(1) passes the public security criteria but (2) is subject to his secret vulnerability. Jerry publishes
this seed and the resulting curve, pretending that the seed was the first random seed that passed the
public security criteria.

4.4 Optimizing the attack

Assume that the curves vulnerable to Jerry’s secret attack are randomly distributed over the curves
satisfying the public security criteria. Then the success probability that a seed leads to a suitable curve
is the probability that a curve is vulnerable to the secret attack times the probability that a curve
satisfies the public security criteria. Depending on which condition is easier to check Jerry runs many
hash computations to compute candidate bs, checks them for the easier criterion and only checks the
surviving choices for the other criterion. The hash computations and security checks for each seed are
independent from other seeds; thus, this procedure can be parallelized with an arbitrary number of
parallel computing instances.

We generated a family of curves to show the power of this method and highlight the computing
power of hardware accelerators (such as GPUs or Xeon Phis). We began by defining our own curve
verification routine and implementing the corresponding secret generation routine. The hash function
we use is Keccak with 256-bit output instead of SHA-1. The hash value is c = int(Keccak(s)), and
the relation is simply b = c in Fp. All choices are easily justified: Keccak is the winner of the SHA-3
competition and much more secure than SHA-1; using a hash function with a long output removes
the weird order of hashed components that smells suspicious and similarly b = c is as simple and
unsuspicious as it can get. In reality, however, these choices greatly benefit the attack: the GPUs
efficiently search through many seeds in parallel, one single computation of Keccak has a much easier
data flow than in the method above, and having b computed without any expensive number-theoretic
computation (such as square roots) means that the curve can be tested already on the GPUs and only
the fraction that satisfies the first test is passed on to the next stage. Of course, for a real vulnerability
we would have to add the cost of checking for that vulnerability, but minimizing overhead is still
useful.

Except for the differences stated above, we followed closely the setting of the NIST P-curves. The
target is to generate curves of the form y2 = x3 − 3x+ b over Fp, and we consider 3 choices of p: the
NIST P-224, P-256, and P-384 primes. (For P-384 we switched to Keccak with 384-bit output.) As
a placeholder “vulnerability” we define E to be vulnerable if b starts with the hex-string BADA55EC.
This fixes 8 hex digits, i.e., it simulates a 1-out-of-232 attack. In addition we require that the curves
meet the standard ECDLP criteria plus twist security and have both cofactors equal to 1.

4.5 Implementation

Our implementation uses NVIDIA’s CUDA framework for parallel programming on GPUs. A high-end
GPU today allows several thousands of threads to run in parallel, though at a frequency slightly lower
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than high-end CPUs. We let each thread start with its own random seed. The threads then hash the
seeds in parallel. After hashing, each thread outputs the hash value if it starts with the hex-string
BADA55EC. To restart, each seed is simply increased by 1 such that no new source of randomness
is required. Checking whether outputs from GPUs also satisfy the public security criteria is done
by running a Sage [24] script on CPUs. Since only 1 out of 232 curves has the desired pattern, the
CPU computation is totally hidden by GPU computation. Longer strings, corresponding to less likely
vulnerabilities, make GPUs even more powerful for our attack scheme. Note that this situation has
changed over the last 15 years; at the time that the NIST curves were generated, their procedure would
have been close to optimal for an attack performed on the available CPU architectures, especially with
SHA-1 implemented in hardware.

In the end we found 3 “vulnerable” verifiably hashed curves: BADA55-VR-224, BADA55-VR-256,
and BADA55-VR-384, each corresponding to one of the three NIST P-curves. Curve parameters can
be found on the BADA55 web page [2] and in Appendix A.

As an example, BADA55-VR-256 was found within 7 hours, using a cluster of 41 NVIDIA GTX780
GPUs (http://blog.cr.yp.to/20140602-saber.html). Each GPU is able to carry out 170 million
256-bit-output Keccak hashes in a second. Most of the instructions are bitwise logic instructions. On
average each core performs 0.58 bitwise logic instructions per cycle while the theoretical maximum
throughput is 0.83. We have two explanations for the gap: first, each thread uses many registers, which
makes the number of active warps too small to fully hide the instruction latency; second, there is not
quite enough instruction-level parallelism to fully utilize the cores in this GPU architecture. We also
tested our implementation on K10 GPUs. Each of them carries out only 61 million hashes per second.
This is likely to be caused by register spilling: the K10 GPUs have only 63 registers per thread instead
of the 255 registers of the GTX780. Using a sufficient amount of computing power easily allows Jerry
to deal with secret vulnerabilities that have smaller probabilities of occurrence than 2−32.

5 Manipulating nothing-up-my-sleeve numbers

There are some particularly pesky researchers who do not shut up even when provided with a verifi-
cation routine as in the previous section. These researchers might even think of the powerful attack
presented in the previous section. We will now highlight two such cases and then show how Jerry can
deal with such overly sceptic people. In 1999, M. Scott wrote as a reaction to the announcement of
the NIST curves [20]:

[...] Consider now the possibility that one in a million of all curves have an

exploitable structure that "they" know about, but we don’t. Then "they" simply

generate a million random seeds until they find one that generates one of

"their" curves. Then they get us to use them. And remember the standard

paranoia assumptions apply - "they" have computing power way beyond what we

can muster. So maybe that could be 1 billion.

A much simpler approach would generate more trust. Simply select B as an

integer formed from the maximum number of digits of pi that provide a number B

which is less that p. Then keep incrementing B until the number of points on

the curve is prime. Such a curve will be accepted as "random" as all would

accept that the decimal digits of pi have no unfortunate interaction with

elliptic curves. We would all accept that such a curve had not been specially

"cooked".

So, sigh, why didn’t they do it that way? Do they want to be distrusted?

In the same vein the German ECC Brainpool [4] consortium raised scepticism and suggested using
natural constants in place of random seeds. They coined the term “verifiably pseudorandom” for this
method of generating seeds. Others speak of “nothing-up-my-sleeves numbers”, a nice reference to
magicians which we will take as an inspiration to our endeavor to show how Jerry can play this system.
We comment that “nothing-up-my-sleeves numbers” also appear in other areas of cryptography and
can be manipulated in similar ways, but this paper focuses on manipulation of elliptic curves.

http://blog.cr.yp.to/20140602-saber.html
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5.1 Public procedure

We first present the procedure that Brainpool is using to produce curve parameters [4, Section 5.2]:

1. Obtain a 160-bit seed s from the hexadecimal representation of e.

2. Compute h← SHA1(s).

3. Deterministically expand h to the required length for the curve parameter a.

4. Let a← int(h) and check if −3 = a · u4 is solvable in Fp. If so, compute and store u. Otherwise
update the seed s to s← (s+ 1) mod 2160 and return to step 2.

5. Set seeda ← s and update s← (s+ 1) mod 2160.

6. Compute h← SHA1(s).

7. Deterministically expand h to the required length for the curve parameter b; let b← int(h).

8. Check that the elliptic curve E over Fp given by y3 = x3 + ax + b fulfills all required security
features. If not, update the seed s to s← (s+ 1) mod 2160 and return to step 2.

9. Set seedb ← s and update s← (s+ 1) mod 2160.

10. Compute h← SHA1(s).

11. Deterministically expand h; let t← int(h).

12. Find the base point P0 with the smallest x-coordinate. Compute P ← tP0.

13. Set seedP ← s.

14. Return the curve parameters a, b, P , and u and the seeds seeda, seedb, and seedP .

Despite the apparent rigidity coming from the natural constant e and the deterministic nature of
this algorithm, there are actually several arbitrary choices that Jerry can use in his favor as we show
in the following.

5.2 The attack

In order to find a well-defined, deterministic procedure that leads to a curve with the desired vul-
nerability, Jerry needs a sufficiently large set of plausible choices for the generation algorithm that
allows Jerry to pinpoint a specific choice resulting in appropriate curve parameters. When defining the
generation procedure, Jerry is free, e.g., to choose a particular hash function, the length of the input
seed, the update function between seeds, and the initial constant for deriving the seed. The basic idea
for the attack is to try all possible combinations of hash functions, seed length, initial seed constant,
and so on, until he finds a curve that exhibits the desired vulnerability.

Choice of hash function. There are many easily justified choices for the hash function. Following
Brainpool, Jerry could use SHA-1; since SHA-1 is considered less secure obvious replacements are
SHA-256 or SHA-512. Yet another possibility is to use Keccak, the recent SHA-3 competition winner.
Keccak offers many variations with different initialization vectors and padding rules; the security level
of Keccak is adjustable by choosing several different options for r (bit rate) and c (capacity). Examples
of the Keccak family are Keccak-224, Keccak-256, Keccak-384, Keccak-512, “default” Keccak (capacity
c = 576 with 128 bytes of output), Keccak-128 (capacity c = 256 with 168 bytes of output), SHA3-
224, SHA3-256, SHA3-384, and SHA3-512. All of these Keccak/SHA-3 choices can be implemented
efficiently with a single code base and variable input parameters. For our example the randomness
gained from the Keccak choices was sufficient so that we did not implement other hash functions.

Seed length. The Brainpool standard uses a seed length of 160 bits. There is no explanation why the
length of 160-bit was chosen. Some general remarks refer to previous standards which also use 160-bit
seeds. Obviously, there are more plausible possibilities for the seed length. Jerry can easily argue for
any seed length that is longer than 160 bits, e.g., to use 256 bits since it provides “cryptographic
parity”[14] with SHA-256, or to use 512 bits because it provides very high security. A shorter seed
length may be harder to sell to a sceptical audience.



12 BADA55 Research Team

Update function. Brainpool uses an increment modulo 2160 on the seed in order to step to valid,
secure curve parameters. There are more options for the implementation of the seed update, e.g., using
a 32-bit counter at the beginning or at the end of the seed, interpreting the bit-sequence of the seed
as an integer in big-endian or little-endian order, and so on. Using a counter is preferable for parallel
implementations because cores can search different counter regions separately within a range that is
likely to contain at most one curve satisfying the public security criteria. Once a good candidate is
found, Jerry needs to check that this would be the first suitable curve for the deterministic increments.

Choice of constant. Brainpool uses e, the base of natural logarithms; there are no reasons given
why this particular value was chosen. Another possibility is π, used by Brainpool for the verifiably
pseudorandom generation of primes. These values can be used with the justification to follow the
Brainpool standard.

More options can be derived by following different standards that use different values. For example,√
2 is the first constant used in SHA-1 and 3

√
2 is the first round constant used in SHA-2. The golden

ratio (1 +
√

5)/2 is used in RC5 and the Tiny Encryption Algorithm, sin(1) is the first constant used
in MD5, and 1/π is the constant used in ARIA. More possibilities are sin, cos, tan, cosh, . . . ,

√
x,

3
√
x, . . . of small integers or small prime numbers, their reciprocals, and using other transcendental

numbers, e.g., the Riemann zeta function at odd integers.

Jerry could be creative and use previously unused numbers such as numbers derived from some his-
torical document or newspaper, personal information of, e.g., arbitrary celebrities in an arbitrary order,
arbitrary collections of natural or physical constants and even a combination of several sources. If the
public accepts numbers with such flimsy justifications as “nothing-up-my-sleeves numbers” then Jerry
obviously has as much flexibility as in Section 4. We make the worst-case assumption that the public

is not quite as easily fooled, and similarly that the public would not accept 703e(
8√30+4π)/9 sin( 3√16) as

a “nothing-up-my-sleeve number”.

5.3 Implementation

For this example, we are aiming at finding a plausible procedure that generates a verifiably pseu-
dorandom curve. As “vulnerability” we use that the string BADA55 appears within the hexadecimal
representation of the curve parameter a. We use the NIST prime P-224, thus there are 200 possible
starting positions for the BADA55 string, meaning that this simulates a vulnerability with probability
200/224 ∼ 2−16.

We begin with 17 natural constants: π, e, Euler gamma,
√

2,
√

3,
√

5,
√

7, log(2), (1 +
√

5)/2, ζ(3),
ζ(5), sin(1), sin(2), cos(1), cos(2), tan(1), and tan(2). We extend this list by including reciprocals. We
then convert to constants between 0 and 1 in three different ways: take the fractional part; divide by
256 and discard any minus sign; or take all bits starting from the most significant (i.e., divide by an
appropriate power of 2), again discarding any minus sign. Removing duplicates produces 73 starting
seeds.

For the hash function, we are using the 10 variants of Keccak listed above. As length for each seed,
we use either 20, 32, 48, 64, or 128 bytes, or the block size of the Keccak configuration (6 choices). The
seed is either stored in big-endian or little-endian format (2 choices). In order to update the seed during
the generation procedure, we are using a counter of length either 0 (i.e., the seed itself is incremented),
2, 3, 4, or 8 bytes (5 choices), either at the beginning or at the end of the seed (2 choices). We either
truncate the seed to the right length or round it to the right length (2 choices); note that in many
cases these are identical. Finally, we are using several different ways to update the counter between
generation of a and b and to choose the order of generating a and b (8 choices). All in all, we have
73 · 10 · 6 · 2 · 5 · 2 · 2 · 8 = 1401600 possible configurations, mostly different, with a high probability to
find a procedure that produces the desired vulnerability.

To make the verification procedure seemingly deterministic, we have to use the first curve param-
eters (using the specified update function) that result in a “secure” curve according to the public
security tests. However, performing all public security tests for each iteration candidate during the
attack is very costly. Instead, we split the attack into two steps:
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1. For a given verification procedure fi we iterate over the seeds si,k using the specific update func-
tion of fi. We check each parameter candidate from seed si,k for our secret BADA55 vulnerability.
After a certain number of update steps the probability that we passed valid, secure parameters is
very high; thus, we discard the verification procedure and start over with another one. If we find
a candidate exhibiting the vulnerability, we perform the public security tests on this particular
candidate. If the BADA55 candidate passes, we proceed to step 2.

2. We perform the whole public verification procedure fi stating with seed si,0 and check whether
there is any valid parameter set passing the public security checks already before the BADA55

parameters are reached. If there is such an earlier parameter set, we return to step 1 with the
next verification procedure fi+1.

The largest workload in our attack scenario is step 2, the re-checking for earlier safe curve param-
eters before BADA55 candidates. The public security tests are not well suited for GPU parallelization;
the first step of the attack procedure is relatively cheap and a GPU parallelization of this step does
not have a remarkable impact on the overall runtime. Therefore, we implemented the whole attack
only for the CPUs of the Saber cluster and left the GPUs idle. We chose 8000 as the limit for the
update counter to have a good chance that the first twist-secure curve starting from the seed is the
curve with our vulnerability. This means that in total 1401600 ·8000 ∼ 233 curves are covered of which
we expect 218 to be twist secure with small cofactor.

5.4 Example

Using the above described freedom in the specification of the curve generation procedure, we computed
(using a few hours on a cluster) the following verification procedure which outputs a curve with BADA55

in a. In fact we easily found several examples and here show the nicest one: the counter was increased
only about a hundred times, the BADA55 string appears very early in a, and the starting value is very
clearly within the boundaries of public acceptability. We could have easily chosen a more restrictive
“vulnerability”.

This is how Jerry can present this procedure:

BADA55-VPR-224 uses a verifiably pseudorandom curve-generation procedure for maximum secu-
rity. The natural starting value is cos(1) in order to make BADA55-VPR-224 independent of previous
designs and to increase the design diversity: Brainpool already uses exp(1) = e and arctan(1) = π/4 (π
and π/4 are equivalent here since bits are taken starting from the most significant), and MD5 already
uses sin(1). BADA55-VPR-224 generates the full 160-bit seed as a 32-bit counter followed by cos(1).
The seed update to generate b after generating a is to complement the seed; this ensures maximal
difference between these parameters. BADA55-VPR-224 uses the state-of-the-art SHA-3 hash function
and the widespread NIST prime P-224, i.e., p = 2224 − 296 + 1.

The generation procedure is as follows; it uses the first counter value that produces a secure curve:

1. Obtain a 160-bit seed s by appending the hexadecimal representation of cos(1) to a 32-bit
counter, i.e., s← 0x00000000 | 0x8A51407DA8345C91C2466D976871BD2A.

2. Compute h← SHA3512(s).
3. Let a← int(h) and set seeda ← s.
4. Let t be the bitwise complement of s.
5. Compute h← SHA3512(t).
6. Let b← int(h).
7. Check that the elliptic curve E over Fp given by y3 = x3 + ax + b fulfills all public security

requirements. If not, update the seed s by increasing the counter and return to step 2.
8. Set seedb ← t.
9. Return the curve parameters a and b and the seeds seeda and seedb for verification.

The first counter value that gives a secure curve is 184 (hex 0xB8), giving the seeds

seeda = 0x000000B88A51407DA8345C91C2466D976871BD2A,
seedb = 0xFFFFFF4775AEBF8257CBA36E3DB99268978E42D5.
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The curve parameters are

a = 0x7144BA12CE8A0C3BEFA053EDBADA555A42391AC64F052376E041C7D4AF23195E

BD8D83625321D452E8A0C3BB0A048A26115704E45DCEB346A9F4BD9741D14D49,
b = 0x5C32EC7FC48CE1802D9B70DBC3FA574EAF015FCE4E99B43EBE3468D6EFB2276B

A3669AFF6FFC0F4C6AE4AE2E5D74C3C0AF97DCE17147688DDA89E734B56944A2.

6 Manipulating committees

The previous sections already pointed out several marketing tricks Jerry can use to sell his curves. In
addition it helps if he can rely on some additional parties:

• Dr. Dan, to advertise properties of Jerry’s curve generation routine and spread FUD about other
choices;
• Margaret, to propose the curve for Internet protocols;
• Scott, to implement the arithmetic (preferably in hardware) meaning that Jerry can point to a

company user who is already committed to Jerry’s proposal so that it cannot be changed anymore;

and of course on his position as a member of a trusted agency.
However, there remain procedures for curve standardization that are hard to overcome: Curve25519

is an example of a procedure to derive secure curve parameters that exhibits only a small attack
surface for the injection of secret vulnerabilities. Future research will target such overly sceptical
curve generation procedures in order to hopefully fool even the most sceptical and security fanatic
audience.
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A The BADA55 curves

This section presents the “BADA55 curves” mentioned in Section 3, Section 4 and Section 5. Each
BADA55 curve is of the form y2 = x3 + ax + b over a prime field Fp, where p is one of the NIST or
the ANSSI primes. For the BADA55-R curve and the BADA55-VR curves a = −3. The curves meet
all the SafeCurves criteria, and the cofactors of the curve and its twist are 1 (cf. Section 2). For each
curve we present the parameters directly in the Sage [24] script that is used to check the criteria and
cofactors.

Listing A.1 The BADA55-R-256 curve is defined modulo the ANSSI prime p =
0xF1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C03.

B = 0xBADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BD48

p = 0xF1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C03

k = GF(p)

E = EllipticCurve([-3,k(B)])

n = E.cardinality()

print n != p

print n.is_prime()

print (2*p+2-n).is_prime()

print Integers(n)(p).multiplicative_order() * 100 >= n-1

print Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1

cmdisc = ((p+1-n)^2-4*p).squarefree_part()

if cmdisc % 4 != 1: cmdisc *= 4

print -cmdisc > 2^100

Listing A.2 The BADA55-VR-224 curve is defined modulo the NIST P-224 prime p = 2224−296+1.
The curve parameter b is generated by hashing the seed s below using Keccak with 256-bit output as
for BADA55-VR-256. Since the output is more than 224 bits, we implicitly reduce it modulo p.

S = 0x3CC520E9434349DF680A8F4BCADDA648D693B2907B216EE55CB4853DB68F9165

B = 0xBADA55ECFD9CA54C0738B8A6FB8CF4CCF84E916D83D6DA1B78B622351E11AB4E

# not verified in this script: B is keccakc512 hash of S

p = 2^224 - 2^96 + 1

k = GF(p)

E = EllipticCurve([-3,k(B)])

n = E.cardinality()

print n != p

print n.is_prime()

print (2*p+2-n).is_prime()

print Integers(n)(p).multiplicative_order() * 100 >= n-1

print Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1

cmdisc = ((p+1-n)^2-4*p).squarefree_part()

if cmdisc % 4 != 1: cmdisc *= 4

print -cmdisc > 2^100
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Listing A.3 The BADA55-VR-256 curve is defined modulo the NIST P-256 prime p = 2256−2224+
2192 + 296 − 1. The curve parameter b is generated by hashing the seed s below using Keccak with
256-bit output, i.e., Keccak with capacity 512.

S = 0x3ADCC48E36F1D1926701417F101A75F000118A739D4686E77278325A825AA3C6

B = 0xBADA55ECD8BBEAD3ADD6C534F92197DEB47FCEB9BE7E0E702A8D1DD56B5D0B0C

# not verified in this script: B is keccakc512 hash of S

p = 2^256 - 2^224 + 2^192 + 2^96 - 1

k = GF(p)

E = EllipticCurve([-3,k(B)])

n = E.cardinality()

print n != p

print n.is_prime()

print (2*p+2-n).is_prime()

print Integers(n)(p).multiplicative_order() * 100 >= n-1

print Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1

cmdisc = ((p+1-n)^2-4*p).squarefree_part()

if cmdisc % 4 != 1: cmdisc *= 4

print -cmdisc > 2^100

Listing A.4 The BADA55-VR-384 curve is defined over the NIST P-384 prime p = 2384 − 2128 −
296 + 232 − 1. The curve parameter b is generated by hashing the seed s below using Keccak with
384-bit output, i.e., Keccak with capacity 768.

S = 0xCA9EBD338A9EE0E6862FD329062ABC06A793575A1C744F0EC24503A525F5D06E

B = 0xBADA55EC3BE2AD1F9EEEA5881ECF95BBF3AC392526F01D4CD13E684C63A17CC4

D5F271642AD83899113817A61006413D

# not verified in this script: B is keccakc768 hash of S

p = 2^384 - 2^128 - 2^96 + 2^32 - 1

k = GF(p)

E = EllipticCurve([-3,k(B)])

n = E.cardinality()

print n != p

print n.is_prime()

print (2*p+2-n).is_prime()

print Integers(n)(p).multiplicative_order() * 100 >= n-1

print Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1

cmdisc = ((p+1-n)^2-4*p).squarefree_part()

if cmdisc % 4 != 1: cmdisc *= 4

print -cmdisc > 2^100
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Listing A.5 The BADA55-VPR-224 curve is defined over the NIST P-224 prime p = 2224−296+1.
The hash function we use is SHA-3-512. The seed s is composed of the first digits of cos(1) plus a
counter; t is the binary complement of s. We then hash s to obtain the curve parameter a and hash t
to obtain b. BADA55-VPR-224 is the curve with the smallest counter that satisfies the public security
criteria.

cos1 = 0x8A51407DA8345C91C2466D976871BD2A

print cos1 == Integer(RealField(128)(cos(1))*2^128)

S = 0x000000B88A51407DA8345C91C2466D976871BD2A

print S == 184*2^128 + cos1

# not verified by this script: 184 is first counter giving secure curve

T = 0xFFFFFF4775AEBF8257CBA36E3DB99268978E42D5

print S+T == 2^160-1

A = 0x7144BA12CE8A0C3BEFA053EDBADA555A42391FC64F052376E041C7D4AF23195E

BD8D83625321D452E8A0C3BB0A048A26115704E45DCEB346A9F4BD9741D14D49

# not verified in this script: A is hash of S

B = 0x5C32EC7FC48CE1802D9B70DBC3FA574EAF015FCE4E99B43EBE3468D6EFB2276B

A3669AFF6FFC0F4C6AE4AE2E5D74C3C0AF97DCE17147688DDA89E734B56944A2

# not verified in this script: B is hash of T

p = 2^224 - 2^96 + 1

k = GF(p)

E = EllipticCurve([k(A),k(B)])

n = E.cardinality()

print n != p

print n.is_prime()

print (2*p+2-n).is_prime()

print Integers(n)(p).multiplicative_order() * 100 >= n-1

print Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1

cmdisc = ((p+1-n)^2-4*p).squarefree_part()

if cmdisc % 4 != 1: cmdisc *= 4

print -cmdisc > 2^100
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