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NSA/NIST FUD

The NIST elliptic curves are behind the state of the art:
I Chosen by Jerry Solinas at NSA.

I Coefficients produced from NSA’s SHA-1.
I NIST P-224 is not twist-secure.
I etc.

Let’s make some new curves.
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Verifiable randomness

Produce verifiably random numbers
using a secure hash so that nobody has to trust us.

I 2000: Certicom Research “Standards for Efficient
Cryptography 2: Recommended Elliptic Curve Domain
Parameters”, Version 1.0.

I 2000: IEEE Std 1363-2000 “IEEE Standard Specifications for
Public-Key Cryptography”.

I 2001: ANSI X9.63 “Public Key Cryptography For The
Financial Services Industry: Key Agreement and Key
Transport Using Elliptic Curve Cryptography”.

I 2010: Certicom Research (Daniel R. L. Brown) “Standards for
Efficient Cryptography 2: Recommended Elliptic Curve
Domain Parameters”, Version 2.0.



On the importance of verifiable randomness

2014.01.13 Daniel R. L. Brown:

1. Pseudorandomness protects effectively (as
possible for ECC) against the spectral weakness
necessary to hypothesize a malicious NIST P256.

2. Rigidity protects against the spectral weakness
only by invoking assumptions about spectral weakness
(*).

3. Protecting against attacks, such as the
hypothetical spectral weakness, is more important
than (subsumes?) protecting against malicious
generation.

Does anyone here know what “spectral weakness” means?

http://thread.gmane.org/gmane.ietf.irtf.cfrg/2553/focus=2556
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Picture credit: eyerayofthebeholder.blogspot.dk/2014/01/a-story-driven-weakness-for-allip.html
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Freshly made from the best ingredients

Take the NIST P-256 prime p = 2256 − 2224 + 2192 + 296 − 1.

Generate random seeds s and hashes B = H(s).
Hash function H:
Keccak with 256-bit output (i.e., keccakc512).

If the elliptic curve x3 − 3x + B mod p
does not meet standard security criteria plus twist-security,
start over. (This happens tens of thousands of times!)

Same with NIST P-224 prime 2224 − 296 + 1.

Also with NIST P-384 prime 2384 − 2128 − 296 + 232 − 1.
keccakc512 is too small here so we switched to keccakc768.
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Random seeds for your verification pleasure

224: 3CC520E9434349DF680A8F4BCADDA648
D693B2907B216EE55CB4853DB68F9165

256: 3ADCC48E36F1D1926701417F101A75F0
00118A739D4686E77278325A825AA3C6

384: CA9EBD338A9EE0E6862FD329062ABC06
A793575A1C744F0EC24503A525F5D06E



The B values in x 3 − 3x + B

224: BADA55ECFD9CA54C0738B8A6FB8CF4CC
F84E916D83D6DA1B78B622351E11AB4E

256: BADA55ECD8BBEAD3ADD6C534F92197DE
B47FCEB9BE7E0E702A8D1DD56B5D0B0C

384: BADA55EC3BE2AD1F9EEEA5881ECF95BB
F3AC392526F01D4CD13E684C63A17CC4
D5F271642AD83899113817A61006413D
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1999 Michael Scott ”Re: NIST annouces set of Elliptic Curves”:
Consider now the possibility that one in a million of all
curves have an exploitable structure that "they" know
about, but we don’t.. Then "they" simply generate a
million random seeds until they find one that generates
one of "their" curves. Then they get us to use them. And
remember the standard paranoia assumptions apply - "they"
have computing power way beyond what we can muster. So
maybe that could be 1 billion.

A much simpler approach would generate more trust. Simply
select B as an integer formed from the maximum number of
digits of pi that provide a number B which is less that
p.Then keep incrementing B until the number of points on
the curve is prime. Such a curve will be accepted as
"random" as all would accept that the decimal digits of pi
have no unfortunate interaction with elliptic curves. We
would all accept that such a curve had not been specially
"cooked".

So, sigh, why didn’t they do it that way? Do they want to
be distrusted?

https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ


Brainpool to the rescue

2005 “ECC Brainpool standard curves and curve generation”
generates deterministic seeds from π and e.

brainpoolP256r1:
p: A9FB57DBA1EEA9BC3E660A909D838D72

6E3BF623D52620282013481D1F6E5377
A: 7D5A0975FC2C3057EEF67530417AFFE7

FB8055C126DC5C6CE94A4B44F330B5D9
B: 26DC5C6CE94A4B44F330B5D9BBD77CBF

958416295CF7E1CE6BCCDC18FF8C07B6

Screwed up data flow in hash inputs; still uses SHA-1;
not twist-secure.
Let’s make an NSA-free replacement with sensible data flow.
And let’s stick to the NIST primes.
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Nothing up our sleeves

Constants already used: sin 1; π/4 = arctan 1; e = exp 1.
Start from cos 1.

Generate the full 160-bit seed
as 32-bit counter followed by cos 1.

(16-bit counter would have been unsafe:
more than 1/1000 chance of failing to find secure curve.)

To avoid the Brainpool problems:
I Don’t concatenate SHA-1 outputs.

Use maximum-security full-length SHA-3-512.
I Generate B seed as complement of A seed.

Guaranteed to be different.
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Sage computer-algebra system computing 128 bits of cos 1:

sage -c ’print RealField(128)(cos(1)).str(16)[2:34]’
8a51407da8345c91c2466d976871bd2a

We started computations recently for the NIST P-224 prime
and already found a secure twist-secure curve from seed
000000B8 8A51407DA8345C91C2466D976871BD2A.

Here are A,B (please verify with your own SHA-3 software):
7144BA12CE8A0C3BEFA053EDBADA555A
42391FC64F052376E041C7D4AF23195E
BD8D83625321D452E8A0C3BB0A048A26
115704E45DCEB346A9F4BD9741D14D49,
5C32EC7FC48CE1802D9B70DBC3FA574E
AF015FCE4E99B43EBE3468D6EFB2276B
A3669AFF6FFC0F4C6AE4AE2E5D74C3C0
AF97DCE17147688DDA89E734B56944A2
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Lessons and credits

“Verifiably random” curves,
even with “deterministic” seeds,
do not stop the attacker
from generating a curve
with a one-in-a-million weakness.

safecurves.cr.yp.to/bada55.html

Computation credits:
Saber cluster at Technische Universiteit Eindhoven;
ISF K10 cluster at University of Haifa.

http://safecurves.cr.yp.to/bada55.html

